Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,7,6',7'-Tetraphenyl-2,2'-bi[1,3-dithia-5,8-diazacyclopenta[b]naphthalenylidene] chloroform disolvate

Ramababu Bolligarla, Gummadi Durgaprasad and Samar K. Das*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India Correspondence e-mail: skdsc@uohyd.ernet.in

Received 12 May 2011; accepted 21 July 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.109; data-to-parameter ratio = 15.9.

The title compound, $C_{42}H_{24}N_4S_4$ ·2CHCl₃, a symmetrical tetrathiafulvalene (TTF) derivative, was prepared by a triethylphosphite-mediated self-coupling reaction of 6,7-diphenyl-1,3-dithia-5,8-diazacyclopenta[*b*]napthalen-2-one. The asymmetric unit contains two TTF molecules and four chloroform solvent molecules. Cl···Cl interactions [contact distances = 3.263 (1)–3.395 (2) Å] are present between the solvent molecules, resulting in a tape along the *bc* plane. The crystal packing features weak C–H···Cl and C–H···N hydrogen bonds, resulting in the formation of a two-dimensional supramolecular network.

Related literature

For TTF chemistry, see: Bendikov *et al.* (2004). For conductors and super-conductors, see: Yamada *et al.* (2004); Otsubo & Takimiya (2004). For field effect transistors, see: Mas-Torrent *et al.* (2004); Noda *et al.* (2005); Naraso *et al.* (2005). For the synthesis see: Bolligarla & Das (2011). For bond lengths in TTF derivatives, see: Bouguessa *et al.* (2003).

Experimental

Crystal data

 $C_{42}H_{24}N_4S_4 \cdot 2CHCl_3$ $M_r = 951.63$ Monoclinic, Cc a = 14.5359 (11) Å b = 14.7543 (11) Å c = 39.771 (3) Å $\beta = 97.616$ (2)° V = 8454.3 (11) Å³ Z = 8 Mo Kα radiation μ = 0.64 mm⁻¹ T = 100 K 0.48 × 0.36 × 0.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.748, T_{\rm max} = 0.915$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 2 restraints

 $wR(F^2) = 0.109$ H-atom param

 S = 1.07 $\Delta \rho_{max} = 0.58$ c

 16629 reflections
 $\Delta \rho_{min} = -0.66$

 1045 parameters
 $\Delta \rho_{min} = -0.66$

43023 measured reflections 16629 independent reflections 16092 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$

2 restraints H-atom parameters constrained $\begin{aligned} &\Delta\rho_{max}=0.58\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.66\ e\ \text{\AA}^{-3}\end{aligned}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8···Cl2 ⁱ	0.93	2.94	3.676 (4)	137
$C85 - H85 \cdots N2^{ii}$	0.98	2.31	3.233 (5)	156
C12−H12···N6 ⁱⁱⁱ	0.93	2.61	3.344 (4)	136
C86−H86···N3 ^{iv}	0.98	2.29	3.223 (5)	158
C88−H88···N8 ^{iv}	0.98	2.28	3.199 (5)	155
$C87 - H87 \cdots N5^{v}$	0.98	2.32	3.246 (5)	157
$C60-H60\cdots N1^{vi}$	0.93	2.63	3.392 (5)	139
C78−H78···N4 ^{vii}	0.93	2.62	3.427 (4)	145
$C42 - H42 \cdots N7^{v}$	0.93	2.61	3.358 (4)	138

Symmetry codes: (i) x - 1, y, z; (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) x, y - 1, z; (iv) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (v) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (vi) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (vi) x, y + 1, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Department of Science and Technology, Government of India, for financial support (project No. SR/SI/ IC-23/2007). The National X-ray Diffractometer facility set up at the University of Hyderabad by the Department of Science and Technology, Government of India, is gratefully acknowledged for providing the crystal data. We are also grateful to the UGC, New Delhi, for providing infrastructure facilities at the University of Hyderabad under a UPE grant. RB and GD thank the CSIR, New Delhi, for their fellowships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2113).

References

Bendikov, M., Wudl, F. & Perepichka, D. F. (2004). *Chem. Rev.* **104**, 4891–4945. Bolligarla, R. & Das, S. K. (2011). *Tetrahedron Lett.* **52**, 2496–2500.

- Bouguessa, S., Gouasmia, A. K., Golhen, S., Ouahab, L. & Fabre, J. M. (2003). Tetrahedron Lett. 44, 9275–9278.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mas-Torrent, M., Durkut, M., Hadley, P., Ribas, X. & Rovira, C. (2004). J. Am. Chem. Soc. 126, 984–985.

- Naraso, Nishida, J., Ando, S., Yamaguchi, J., Itaka, K., Koinuma, H., Tada, H., Tokito, S. & Yamashita, Y. (2005). J. Am. Chem. Soc. 127, 10142–10143.
- Noda, B., Katsuhara, M., Aoyagi, I., Mori, T., Taguchi, T., Kambayashi, T.,
- Ishikawa, K. & Takezoe, H. (2005). Chem. Lett. 34, 392-393.
- Otsubo, T. & Takimiya, K. (2004). Bull. Chem. Soc. Jpn, 77, 43-58.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Yamada, J. & Sugimoto, T. (2004). In *TTF Chemistry, Fundamentals and* Application of Tetrathiafulvalene. Berlin: Springer.

Acta Cryst. (2011). E67, o2231-o2232 [doi:10.1107/S1600536811029540]

6,7,6',7'-Tetraphenyl-2,2'-bi[1,3-dithia-5,8-diazacyclopenta[b]naphthalenylidene] chloroform disolvate

R. Bolligarla, G. Durgaprasad and S. K. Das

Comment

Research interests on tetrathiafulvalene (TTF)-based compounds have remained dynamic in the field of materials science, particularly, in the context of molecular electronics and NLO materials, due to their unique π -donor properties. TTF and its derivatives have successfully been used as versatile building blocks for the formation of charge transfer salts giving rise to organic conductors and even super-conductors [see: Yamada et al. (2004); Otsubo et al. (2004)]. Furthermore, tetrathiafulvalene (TTF) derivatives are promising candidates for semiconductors leading to high performance FETs (Field Effect Transistors) because of their self-assembling properties. However, because of the strong electron-donating properties, the relevant thin films are generally labile to oxygen, resulting in poor FET performance. Naraso et al. have introduced fused aromatic rings or electron-deficient nitrogen heterocycles to the TTF skeleton to enhance the stability and obtained high hole mobilities in the thin films. In our previous letter [Bolligarla et al. (2011)], we have reported the synthesis and physical properties of acceptor-donor-acceptor (A-D-A) TTF (title compound). In solution state, emission behavior of this compound has also been described which is largely solvent dependent with huge Stokes shifts. In this contribution, we have reported the crystal structure and supramolecular feature of the title compound. The asymmetric unit contains two molecules of TTF triad and four molecules of chloroform (solvent) molecules as shown in Fig. 1(a). For clarity, one of the molecules present in the asymmetric unit is shown in Fig. 1(b). As shown in Fig. 1(b), the skeleton of the molecule is almost planar excluding the four peripheral phenyl groups. The r.m.s. deviation from a least-squares plane through the atoms of the core is 0.027 Å. The phenyl rings are deviated from the plane of skeleton of the molecule with angles in the range from 36.03° to 55.81°. The bond lengths in the TTF moiety are in the range of bond lengths, expected for neutral TTF derivatives. Interestingly, six Cl…Cl interactions are present between the solvent molecules resulting in the formation of a one dimensional chloroform tapes, and the Cl. Cl intermolecular contact distances are in the range from 3.263 (1) to 3.395 (2) Å as shown in Fig. 2.

Experimental

The title compound was synthesized according to literature procedure [Bolligarla *et al.* (2011)]. A solution of compound 6,7-diphenyl-1,3-dithia-5,8-diaza-cyclopenta[*b*]napthalen-2-one (125 mg, 0.336 mmol) in triethylphosphite (3 mL) was refluxed at 130–140 °C for 2 h under N₂ atmosphere. After cooling to room temperature, MeOH (20 ml) was added and the resulting orange precipitate was filtered off (Yield: 70.0%). Single crystals of title compound, suitable for single-crystal X-ray analysis was obtained from chloroform in an NMR tube on slow evaporation over a period of two weeks.

Refinement

All non-hydrogen atoms was refined anisotropically. The hydrogen atoms were included in the structure factor calculation by using a riding model.

Figures

Fig. 1. (*a*)Thermal ellipsoidal plot of the asymmetric unit of compound, the asymmetric unit contain two units of two TTF molecules and four chloroform solvent molecules. Hydrogen atoms are not shown for clarity (70% probability); (*b*)Thermal ellipsoidal plot of one of the molecules present in the asymmetric unit of the compound, Hydrogen atoms are not shown for clarity (70% probability).

Fig. 2. The Cl…Cl interactions are between the chloroform solvent molecules to form a one dimensional tape.

Fig. 3. The formation of the title compound.

Fig. 4. Crystal packing diagram of the compound is described by C—H…N and C—H…Cl weak interactions resulting in two dimensional supramolecular network.

2-{6,7-dimethyl-2H-[1,3]dithiolo[4,5-g]quinoxalin-2-ylidene}- 6,7-dimethyl-2H-[1,3]dithiolo[4,5-g]quinoxaline

Crystal data

$C_{42}H_{24}N_4S_4{\cdot}2CHCl_3$	F(000) = 3872
$M_r = 951.63$	$D_{\rm x} = 1.495 {\rm ~Mg~m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 8772 reflections
a = 14.5359 (11) Å	$\theta = 2.3 - 26.2^{\circ}$
<i>b</i> = 14.7543 (11) Å	$\mu = 0.64 \text{ mm}^{-1}$
c = 39.771 (3) Å	T = 100 K
$\beta = 97.616 \ (2)^{\circ}$	Block, brown
$V = 8454.3 (11) \text{ Å}^3$	$0.48\times0.36\times0.14~mm$
Z = 8	

Data collection

Bruker SMART CCD area-detector diffractometer	16629 independent reflections
Radiation source: fine-focus sealed tube	16092 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
φ and ω scans	$\theta_{\text{max}} = 26.2^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 17$
$T_{\min} = 0.748, \ T_{\max} = 0.915$	$k = -18 \rightarrow 18$
43023 measured reflections	$l = -48 \rightarrow 49$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.109$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0576P)^{2} + 12.7425P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
16629 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
1045 parameters	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Absolute structure of the title compound could not be determined unambigously due to the lack of enough contribution towards anomalous dispersion by the non hydrogen atoms present and therefore, the Flack parameter is not reported.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S5	0.12002 (6)	0.93290 (6)	0.57016 (2)	0.02468 (18)
S4	0.58994 (6)	0.14264 (6)	0.51422 (2)	0.02435 (18)
S8	0.35756 (6)	0.86813 (6)	0.51766 (2)	0.02512 (18)
S1	0.37317 (6)	0.14711 (6)	0.58085 (2)	0.02433 (18)
S7	0.22618 (6)	1.02323 (6)	0.51246 (2)	0.02470 (18)
S3	0.44035 (6)	0.27438 (6)	0.52303 (2)	0.02481 (18)
S6	0.25227 (6)	0.77850 (6)	0.57503 (2)	0.02452 (18)
S2	0.52343 (6)	0.01627 (6)	0.57179 (2)	0.02431 (18)
C68	0.4590 (2)	1.0229 (2)	0.44690 (8)	0.0207 (7)
N7	0.39830 (19)	1.16091 (19)	0.42016 (7)	0.0210 (6)
N3	0.5599 (2)	0.4788 (2)	0.43348 (7)	0.0232 (6)
C17	0.2316 (2)	-0.1369 (2)	0.72103 (8)	0.0195 (7)
C31	0.7318 (2)	0.4258 (2)	0.37375 (8)	0.0209 (7)
N6	0.08049 (19)	0.63969 (19)	0.66733 (7)	0.0208 (6)
C26	0.6392 (2)	0.3373 (2)	0.44750 (8)	0.0207 (7)

N2	0.40713 (19)	-0.18868 (19)	0.66189 (7)	0.0207 (6)
C7	0.3249 (2)	-0.0484 (2)	0.64744 (8)	0.0203 (7)
N4	0.69477 (19)	0.34997 (19)	0.42295 (7)	0.0205 (6)
C80	0.4410 (2)	1.3117 (2)	0.37982 (8)	0.0231 (7)
H80	0.4365	1.3281	0.4021	0.028*
N5	-0.0499 (2)	0.78039 (19)	0.66059 (7)	0.0201 (6)
C49	0.0203 (2)	0.7780 (2)	0.64082 (8)	0.0208 (7)
C27	0.5694 (2)	0.4015 (2)	0.45210 (8)	0.0208 (7)
C3	0.3766 (2)	0.0475 (2)	0.60497 (8)	0.0204 (7)
C72	0.5312 (2)	1.0836 (2)	0.40408 (8)	0.0205 (7)
C53	0.0259 (2)	0.5814 (2)	0.71666 (8)	0.0198 (7)
N8	0.52848 (19)	1.0185 (2)	0.42723 (7)	0.0217 (6)
C70	0.3237 (2)	1.0982 (2)	0.46466 (8)	0.0220 (7)
H70	0.2830	1.1471	0.4633	0.026*
C79	0.4564 (2)	1.2221 (2)	0.37206 (8)	0.0206 (7)
N1	0.27045 (19)	-0.06132 (19)	0.67222 (7)	0.0217 (6)
C48	0.0841 (2)	0.7047 (2)	0.64326 (8)	0.0213 (7)
C5	0.4564 (2)	-0.0944 (2)	0.61861 (8)	0.0214 (7)
H5	0.5013	-0.1366	0.6147	0.026*
C23	0.5161 (2)	0.3050 (2)	0.49429 (8)	0.0215 (7)
C6	0.3965 (2)	-0.1118 (2)	0.64298 (8)	0.0195 (7)
C52	0.0166 (2)	0.6463 (2)	0.68797 (8)	0.0195 (7)
C46	0.1639 (2)	0.7729 (2)	0.60089 (8)	0.0200 (7)
C71	0.4624 (2)	1.1536 (2)	0.39973 (8)	0.0206 (7)
C63	-0.2366 (3)	0.8073 (3)	0.73290 (9)	0.0287 (8)
H63	-0.2555	0.8629	0.7406	0.034*
C37	0.6026 (2)	0.5772 (2)	0.39069 (8)	0.0211 (7)
C73	0.6101 (2)	1.0780 (2)	0.38364 (8)	0.0232 (7)
C43	0.2165 (2)	0.8821 (2)	0.55573 (8)	0.0225 (7)
C47	0.1552 (2)	0.7027 (2)	0.62264 (8)	0.0220 (7)
H47	0.1962	0.6540	0.6238	0.026*
C16	0.4548 (2)	-0.3216 (2)	0.71374 (8)	0.0205 (7)
H16	0.5061	-0.2893	0.7086	0.025*
C4	0.4483 (2)	-0.0150 (2)	0.60068 (8)	0.0194 (6)
C75	0.7122 (3)	0.9879 (3)	0.35420 (10)	0.0292 (8)
H75	0.7312	0.9315	0.3473	0.035*
C64	-0.1626 (2)	0.8035 (2)	0.71444 (9)	0.0244 (7)
H64	-0.1332	0.8566	0.7092	0.029*
C8	0.3153 (2)	0.0312 (2)	0.62766 (8)	0.0216 (7)
H8	0.2679	0.0722	0.6300	0.026*
C59	-0.1318 (2)	0.7194 (2)	0.70355 (8)	0.0198 (7)
C22	0.1364 (2)	-0.1222 (2)	0.71611 (9)	0.0228 (7)
H22	0.1063	-0.1097	0.6945	0.027*
C36	0.8284 (3)	0.4120 (2)	0.37773 (9)	0.0256 (7)
H36	0.8605	0.4017	0.3992	0.031*
C24	0.5876 (2)	0.2414 (2)	0.49009 (8)	0.0205 (7)
C65	0.3148 (2)	1.0287 (2)	0.48684 (8)	0.0207 (7)
C45	0.1000 (2)	0.8464 (2)	0.59820 (8)	0.0215 (7)
C18	0.2760 (3)	-0.1517 (3)	0.75389 (9)	0.0289 (8)

H18	0.3399	-0.1602	0.7575	0.035*
C69	0.3949 (2)	1.0949 (2)	0.44409 (9)	0.0216 (7)
C11	0.3653 (2)	-0.2869 (2)	0.70489 (8)	0.0211 (7)
C25	0.6484 (2)	0.2580 (2)	0.46729 (8)	0.0220 (7)
H25	0.6957	0.2169	0.4649	0.026*
C67	0.4498 (2)	0.9523 (2)	0.47032 (8)	0.0225 (7)
H67	0.4923	0.9049	0.4727	0.027*
C28	0.5076 (2)	0.3840 (2)	0.47621 (8)	0.0219 (7)
H28	0.4618	0.4258	0.4796	0.026*
C10	0.3537 (2)	-0.2001 (2)	0.68596 (8)	0.0210 (7)
C2	0.4958 (2)	0.1718 (2)	0.53564 (8)	0.0217 (7)
C74	0.6393 (2)	0.9941 (2)	0.37293 (9)	0.0251 (7)
H74	0.6092	0.9417	0.3785	0.030*
C51	-0.0528 (2)	0.7167 (2)	0.68359 (8)	0.0208 (7)
C1	0.4669 (2)	0.1187 (2)	0.55954 (8)	0.0225 (7)
C38	0.5142 (2)	0.6136 (2)	0.38140 (9)	0.0252 (7)
H38	0.4622	0.5831	0.3868	0.030*
C30	0.6805 (2)	0.4221 (2)	0.40339 (8)	0.0195 (7)
C78	0.6585 (2)	1.1555 (2)	0.37596 (9)	0.0242 (7)
H78	0.6414	1.2117	0.3837	0.029*
C61	-0.2542 (3)	0.6465 (3)	0.72855 (9)	0.0273 (8)
H61	-0.2862	0.5941	0.7329	0.033*
C29	0.6135 (2)	0.4903 (2)	0.40974 (8)	0.0199 (7)
C60	-0.1785 (2)	0.6410(2)	0.71077 (8)	0.0227 (7)
H60	-0.1591	0.5849	0.7037	0.027*
C41	0.6691 (3)	0.7090 (3)	0.36691 (9)	0.0266 (8)
H41	0.7210	0.7417	0.3627	0.032*
C54	0.0349 (2)	0.4884 (2)	0.71084 (9)	0.0246 (7)
H54	0.0318	0.4666	0.6888	0.030*
C50	0.0281 (2)	0.8484 (2)	0.61736 (8)	0.0214 (7)
H50	-0.0148	0.8955	0.6149	0.026*
C66	0.3785 (2)	0.9539 (2)	0.48946 (8)	0.0214 (7)
С9	0.2856 (2)	-0.1324 (2)	0.69186 (8)	0.0213 (7)
C40	0.5808 (3)	0.7428 (2)	0.35680 (9)	0.0264 (7)
H40	0.5729	0.7974	0.3451	0.032*
C21	0.0860 (3)	-0.1262 (2)	0.74348 (10)	0.0271 (8)
H21	0.0220	-0.1179	0.7400	0.032*
C58	0.0324 (3)	0.6119 (2)	0.75016 (9)	0.0269 (7)
H58	0.0258	0.6733	0.7545	0.032*
C33	0.7330 (3)	0.4383 (3)	0.31369 (10)	0.0328 (8)
H33	0.7008	0.4460	0.2921	0.039*
C14	0.3904 (3)	-0.4529 (2)	0.73799 (9)	0.0263 (7)
H14	0.3986	-0.5083	0.7491	0.032*
C44	0.2612 (2)	0.9198 (2)	0.53193 (8)	0.0216 (7)
C81	0.4321 (3)	1.3774 (3)	0.35454 (10)	0.0320 (8)
H81	0.4211	1.4375	0.3599	0.038*
C77	0.7313 (3)	1.1497 (3)	0.35712 (10)	0.0308 (8)
H77	0.7629	1.2017	0.3521	0.037*
C42	0.6796 (2)	0.6263 (2)	0.38336 (8)	0.0226 (7)
			- (-)	- (-)

H42	0.7388	0.6030	0.3896	0.027*
C13	0.3022 (3)	-0.4186 (2)	0.72916 (9)	0.0265 (7)
H13	0.2510	-0.4514	0.7341	0.032*
C32	0.6861 (2)	0.4391 (3)	0.34140 (9)	0.0274 (8)
H32	0.6223	0.4489	0.3384	0.033*
C55	0.0485 (2)	0.4289 (2)	0.73784 (10)	0.0284 (8)
H55	0.0524	0.3671	0.7337	0.034*
C39	0.5040 (3)	0.6944 (2)	0.36430 (9)	0.0280 (8)
H39	0.4447	0.7171	0.3576	0.034*
C76	0.7571 (2)	1.0655 (3)	0.34570 (9)	0.0302 (8)
H76	0.8048	1.0614	0.3323	0.036*
C35	0.8754 (3)	0.4136 (3)	0.34986 (10)	0.0315 (8)
H35	0.9395	0.4063	0.3527	0.038*
C15	0.4667 (2)	-0.4050 (2)	0.73035 (9)	0.0250 (7)
H15	0.5261	-0.4283	0.7363	0.030*
C62	-0.2825 (3)	0.7294 (3)	0.73994 (9)	0.0292 (8)
H62	-0.3325	0.7324	0.7523	0.035*
C34	0.8282 (3)	0.4260 (3)	0.31783 (10)	0.0322 (8)
H34	0.8602	0.4261	0.2991	0.039*
C56	0.0565 (2)	0.4594 (3)	0.77062 (10)	0.0296 (8)
H56	0.0671	0.4188	0.7886	0.036*
C19	0.2261 (3)	-0.1538 (3)	0.78084 (9)	0.0325 (8)
H19	0.2567	-0.1629	0.8026	0.039*
C57	0.0484 (3)	0.5518 (3)	0.77677 (10)	0.0303 (8)
H57	0.0538	0.5730	0.7990	0.036*
C83	0.4533 (3)	1.2638 (3)	0.31343 (10)	0.0340 (9)
H83	0.4572	1.2475	0.2911	0.041*
C84	0.4615(2)	1.1974 (3)	0.33861 (9)	0.0268 (7)
H84	0.4703	1.1371	0.3331	0.032*
C82	0.4396 (3)	1.3532 (3)	0.32132 (10)	0.0350 (9)
H82	0.4354	1.3971	0.3044	0.042*
C20	0.1307 (3)	-0.1424(3)	0.77592 (9)	0.0295 (8)
H20	0.0970	-0.1457	0.7942	0.035*
C12	0.2895 (2)	-0.3356(2)	0.71289 (9)	0.0244 (7)
H12	0.2299	-0.3125	0.7073	0.029*
Cl8	0 19602 (6)	0 45268 (6)	0 64885 (2)	0.03064 (19)
Cl5	-0.10844(6)	0.22596 (6)	0.44357(2)	0.0317(2)
Cl12	0 27482 (6)	0.34015 (6)	0 44034 (2)	0.0313(2)
Cl3	0 99363 (8)	0 14803 (9)	0 58894 (3)	0.0480(3)
Cl4	-0.02752(9)	0 13926 (9)	0.50589(3)	0.0495(3)
C110	0.22187(9)	0.41714 (9)	0.50180(3)	0.0539(3)
Cl11	0.28527 (8)	0 53372 (7)	0.45119 (4)	0.0497(3)
C19	0.25430(9)	0.38265(9)	0 58694 (3)	0.0515(3)
Cl7	0 18825 (8)	0.26046(7)	0.63526 (4)	0.0513(3)
C87	0.2487(3)	0.26016(7)	0.63006 (10)	0.0318(8)
H87	0.3122	0 3547	0.6416	0.037*
C88	0.2241(3)	0 4340 (3)	0 45824 (10)	0.0310 (8)
H88	0 1601	0 4404	0 4472	0.037*
Cll	0.88234 (7)	0.06387 (8)	0.63569 (3)	0.027
	5.00 - 0 (7)			

C16	0.09042 (8)	0.22708 (8)	0.46238 (4)	0.0553 (3)
C86	-0.0125 (3)	0.1644 (3)	0.46373 (10)	0.0332 (8)
H86	-0.0078	0.1074	0.4515	0.040*
C85	0.9839 (3)	0.1270 (3)	0.63160 (10)	0.0323 (8)
H85	0.9802	0.1852	0.6432	0.039*
Cl2	1.08202 (6)	0.06723 (6)	0.65138 (2)	0.03064 (19)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S5	0.0254 (4)	0.0253 (4)	0.0246 (4)	0.0057 (3)	0.0081 (3)	0.0018 (3)
S4	0.0264 (4)	0.0197 (4)	0.0264 (4)	0.0062 (3)	0.0018 (3)	0.0033 (3)
S8	0.0252 (4)	0.0237 (4)	0.0281 (4)	0.0055 (3)	0.0095 (3)	0.0000 (3)
S1	0.0260 (4)	0.0205 (4)	0.0261 (4)	0.0069 (3)	0.0017 (3)	0.0028 (3)
S7	0.0236 (4)	0.0260 (4)	0.0257 (4)	0.0068 (3)	0.0075 (3)	-0.0012 (3)
S3	0.0269 (4)	0.0226 (4)	0.0253 (4)	0.0067 (3)	0.0050 (3)	0.0049 (3)
S6	0.0220 (4)	0.0259 (4)	0.0268 (4)	0.0045 (3)	0.0075 (3)	-0.0016 (3)
S2	0.0260 (4)	0.0200 (4)	0.0275 (4)	0.0060 (3)	0.0056 (3)	0.0044 (3)
C68	0.0197 (16)	0.0226 (17)	0.0187 (15)	0.0020 (13)	-0.0020 (12)	-0.0048 (12)
N7	0.0194 (14)	0.0232 (15)	0.0193 (14)	0.0027 (11)	-0.0013 (11)	-0.0024 (11)
N3	0.0265 (15)	0.0206 (14)	0.0216 (14)	0.0043 (12)	0.0000 (11)	-0.0013 (11)
C17	0.0227 (16)	0.0140 (15)	0.0219 (16)	0.0014 (12)	0.0030 (13)	-0.0022 (12)
C31	0.0218 (16)	0.0165 (16)	0.0242 (17)	0.0049 (13)	0.0019 (13)	-0.0044 (13)
N6	0.0208 (14)	0.0187 (14)	0.0221 (14)	0.0035 (11)	0.0000 (11)	-0.0028 (11)
C26	0.0206 (16)	0.0203 (16)	0.0206 (16)	0.0004 (13)	0.0007 (12)	-0.0064 (13)
N2	0.0204 (14)	0.0163 (13)	0.0245 (14)	0.0046 (11)	-0.0006 (11)	-0.0006 (11)
C7	0.0205 (16)	0.0200 (16)	0.0194 (15)	0.0028 (13)	-0.0013 (12)	-0.0038 (13)
N4	0.0201 (14)	0.0217 (14)	0.0187 (13)	0.0016 (11)	-0.0013 (11)	-0.0028 (11)
C80	0.0164 (15)	0.0318 (19)	0.0207 (16)	0.0022 (14)	0.0012 (12)	-0.0008 (14)
N5	0.0209 (14)	0.0196 (14)	0.0199 (13)	0.0025 (11)	0.0025 (11)	-0.0013 (11)
C49	0.0174 (15)	0.0261 (18)	0.0185 (15)	0.0052 (13)	0.0005 (12)	-0.0032 (13)
C27	0.0214 (16)	0.0194 (16)	0.0203 (16)	0.0037 (13)	-0.0020 (13)	-0.0017 (13)
C3	0.0254 (17)	0.0160 (16)	0.0179 (15)	0.0038 (13)	-0.0043 (13)	-0.0012 (12)
C72	0.0187 (16)	0.0251 (17)	0.0177 (15)	0.0004 (13)	0.0020 (12)	-0.0073 (13)
C53	0.0138 (15)	0.0217 (17)	0.0234 (16)	0.0037 (12)	0.0010 (12)	-0.0004 (13)
N8	0.0148 (13)	0.0258 (15)	0.0243 (14)	0.0029 (11)	0.0020 (11)	-0.0054 (12)
C70	0.0238 (17)	0.0216 (17)	0.0203 (16)	0.0053 (13)	0.0013 (13)	-0.0045 (13)
C79	0.0131 (15)	0.0232 (17)	0.0248 (16)	-0.0001 (13)	0.0001 (12)	0.0011 (13)
N1	0.0186 (14)	0.0193 (14)	0.0265 (15)	0.0030 (11)	0.0009 (11)	-0.0036 (11)
C48	0.0193 (16)	0.0243 (17)	0.0198 (16)	0.0011 (13)	0.0006 (12)	-0.0042 (13)
C5	0.0198 (16)	0.0194 (16)	0.0240 (17)	0.0047 (13)	-0.0005 (13)	-0.0019 (13)
C23	0.0237 (16)	0.0204 (17)	0.0193 (16)	0.0014 (13)	-0.0012 (13)	-0.0010 (12)
C6	0.0223 (16)	0.0154 (15)	0.0195 (16)	-0.0003 (13)	-0.0023 (13)	-0.0047 (12)
C52	0.0181 (15)	0.0221 (17)	0.0180 (15)	0.0005 (13)	0.0016 (12)	-0.0041 (12)
C46	0.0144 (15)	0.0285 (18)	0.0167 (15)	0.0029 (13)	0.0012 (12)	-0.0054 (13)
C71	0.0162 (15)	0.0222 (17)	0.0220 (16)	0.0005 (13)	-0.0030 (12)	-0.0049 (13)
C63	0.0259 (19)	0.028 (2)	0.032 (2)	0.0086 (15)	0.0062 (15)	-0.0042 (15)
C37	0.0234 (16)	0.0194 (16)	0.0204 (16)	0.0024 (13)	0.0028 (13)	-0.0043 (13)

C73	0.0184 (16)	0.0300 (19)	0.0202 (16)	0.0019 (14)	-0.0007 (13)	-0.0051 (13)
C43	0.0179 (16)	0.0276 (18)	0.0221 (17)	0.0054 (14)	0.0030 (13)	-0.0039 (14)
C47	0.0214 (16)	0.0223 (17)	0.0215 (16)	0.0090 (13)	0.0004 (13)	-0.0017 (13)
C16	0.0220 (16)	0.0161 (16)	0.0237 (17)	0.0016 (13)	0.0040 (13)	-0.0014 (12)
C4	0.0204 (16)	0.0196 (16)	0.0175 (15)	0.0001 (13)	-0.0005 (12)	-0.0024 (12)
C75	0.0248 (18)	0.029 (2)	0.0340 (19)	0.0036 (15)	0.0058 (15)	-0.0063 (15)
C64	0.0197 (16)	0.0250 (18)	0.0280 (18)	0.0034 (14)	0.0018 (13)	0.0016 (14)
C8	0.0206 (16)	0.0193 (16)	0.0246 (16)	0.0081 (13)	0.0016 (13)	-0.0018 (13)
C59	0.0158 (15)	0.0212 (16)	0.0213 (16)	0.0062 (13)	-0.0014 (12)	-0.0011 (13)
C22	0.0214 (17)	0.0158 (16)	0.0301 (18)	0.0043 (13)	-0.0005 (14)	0.0017 (13)
C36	0.0264 (18)	0.0192 (17)	0.0301 (18)	0.0053 (14)	-0.0002 (14)	-0.0031 (14)
C24	0.0226 (16)	0.0154 (16)	0.0222 (16)	0.0004 (13)	-0.0010 (13)	-0.0009 (12)
C65	0.0189 (16)	0.0251 (18)	0.0181 (16)	0.0003 (13)	0.0015 (12)	-0.0048 (13)
C45	0.0228 (17)	0.0233 (17)	0.0176 (15)	0.0014 (13)	-0.0001 (13)	-0.0022 (13)
C18	0.0210 (17)	0.038 (2)	0.0279 (18)	0.0074 (15)	0.0023 (14)	-0.0026 (16)
C69	0.0194 (16)	0.0218 (17)	0.0228 (16)	0.0044 (13)	-0.0003 (12)	-0.0050 (13)
C11	0.0255 (17)	0.0207 (17)	0.0163 (15)	0.0032 (13)	-0.0005 (13)	-0.0028 (12)
C25	0.0238 (17)	0.0187 (16)	0.0218 (17)	0.0055 (13)	-0.0028 (13)	-0.0004 (13)
C67	0.0196 (16)	0.0234 (17)	0.0239 (17)	0.0051 (13)	0.0012 (13)	-0.0030 (13)
C28	0.0213 (16)	0.0212 (17)	0.0229 (17)	0.0064 (14)	0.0017 (13)	-0.0021 (13)
C10	0.0201 (16)	0.0185 (16)	0.0229 (17)	0.0039 (13)	-0.0023 (13)	-0.0061 (13)
C2	0.0243 (16)	0.0174 (16)	0.0225 (16)	0.0077 (13)	-0.0009 (13)	-0.0006 (12)
C74	0.0211 (17)	0.0235 (18)	0.0308 (18)	0.0012 (14)	0.0036 (14)	-0.0028 (14)
C51	0.0175 (16)	0.0248 (17)	0.0192 (16)	0.0018 (13)	-0.0017 (12)	-0.0045 (13)
C1	0.0248 (17)	0.0195 (17)	0.0219 (16)	0.0047 (14)	-0.0015 (13)	-0.0012 (13)
C38	0.0252 (18)	0.0240 (18)	0.0274 (18)	-0.0007 (14)	0.0066 (14)	0.0003 (14)
C30	0.0178 (15)	0.0174 (16)	0.0223 (16)	0.0023 (12)	-0.0013 (12)	-0.0046 (12)
C78	0.0210 (17)	0.0212 (18)	0.0297 (18)	0.0029 (14)	0.0007 (14)	-0.0052 (14)
C61	0.0250 (18)	0.0298 (19)	0.0263 (18)	-0.0002 (15)	0.0008 (14)	0.0062 (14)
C29	0.0200 (16)	0.0220 (17)	0.0169 (15)	0.0012 (13)	-0.0007 (12)	-0.0025 (13)
C60	0.0209 (16)	0.0274 (18)	0.0187 (16)	0.0064 (14)	-0.0018 (13)	-0.0006 (13)
C41	0.0289 (19)	0.0271 (18)	0.0240 (17)	-0.0015 (15)	0.0045 (14)	-0.0040 (14)
C54	0.0183 (16)	0.0246 (18)	0.0311 (18)	0.0041 (14)	0.0036 (14)	-0.0048 (14)
C50	0.0205 (16)	0.0258 (18)	0.0175 (15)	0.0056 (13)	0.0007 (12)	-0.0020 (13)
C66	0.0189 (16)	0.0238 (17)	0.0202 (16)	0.0025 (13)	-0.0027 (12)	-0.0026 (13)
С9	0.0190 (16)	0.0220 (17)	0.0216 (16)	0.0013 (13)	-0.0015 (13)	-0.0018 (13)
C40	0.036 (2)	0.0211 (17)	0.0224 (17)	0.0044 (15)	0.0046 (15)	0.0032 (13)
C21	0.0225 (17)	0.0210 (17)	0.038 (2)	0.0045 (14)	0.0061 (15)	-0.0005 (15)
C58	0.0288 (18)	0.0223 (18)	0.0285 (18)	0.0059 (14)	0.0000 (14)	-0.0040 (14)
C33	0.0308 (19)	0.044 (2)	0.0239 (18)	0.0059 (17)	0.0039 (15)	-0.0037 (16)
C14	0.038 (2)	0.0162 (16)	0.0250 (18)	0.0048 (14)	0.0034 (15)	0.0006 (13)
C44	0.0205 (16)	0.0234 (17)	0.0208 (16)	0.0067 (13)	0.0022 (13)	-0.0056 (13)
C81	0.0241 (18)	0.0251 (19)	0.045 (2)	0.0022 (15)	-0.0006 (16)	0.0037 (16)
C77	0.0231 (18)	0.030 (2)	0.040 (2)	-0.0013 (15)	0.0053 (15)	0.0027 (16)
C42	0.0238 (17)	0.0247 (18)	0.0188 (16)	0.0035 (14)	0.0018 (13)	-0.0063 (13)
C13	0.0262 (18)	0.0212 (17)	0.0326 (19)	-0.0046 (14)	0.0064 (15)	-0.0034 (14)
C32	0.0212 (17)	0.032 (2)	0.0290 (18)	0.0043 (14)	0.0017 (14)	-0.0069 (15)
C55	0.0209 (17)	0.0177 (17)	0.046 (2)	0.0041 (13)	0.0032 (15)	0.0028 (15)
C39	0.0285 (18)	0.0241 (18)	0.0306 (19)	0.0090 (15)	0.0012 (15)	0.0013 (14)

C76	0.0187 (16)	0.044 (2)	0.0300 (19)	0.0001 (15)	0.0093 (14)	-0.0029 (16)
C35	0.0211 (18)	0.030 (2)	0.045 (2)	0.0027 (15)	0.0098 (16)	-0.0022 (16)
C15	0.0247 (17)	0.0222 (17)	0.0271 (18)	0.0094 (14)	-0.0003 (14)	-0.0001 (14)
C62	0.0242 (18)	0.038 (2)	0.0263 (18)	0.0062 (16)	0.0087 (14)	0.0010 (15)
C34	0.037 (2)	0.034 (2)	0.0293 (19)	0.0047 (16)	0.0155 (16)	0.0006 (15)
C56	0.0245 (18)	0.0292 (19)	0.036 (2)	0.0063 (15)	0.0068 (15)	0.0086 (15)
C19	0.034 (2)	0.044 (2)	0.0191 (17)	0.0087 (17)	0.0033 (14)	-0.0009 (15)
C57	0.035 (2)	0.0302 (19)	0.0262 (18)	0.0031 (16)	0.0038 (15)	-0.0011 (15)
C83	0.032 (2)	0.046 (2)	0.0235 (18)	-0.0090 (17)	0.0003 (15)	0.0016 (16)
C84	0.0222 (16)	0.0299 (19)	0.0282 (18)	-0.0025 (14)	0.0025 (14)	-0.0058 (15)
C82	0.028 (2)	0.042 (2)	0.033 (2)	-0.0046 (17)	-0.0042 (15)	0.0110 (17)
C20	0.0295 (19)	0.033 (2)	0.0285 (19)	0.0038 (16)	0.0115 (15)	0.0007 (15)
C12	0.0228 (17)	0.0215 (17)	0.0278 (18)	0.0019 (14)	-0.0006 (14)	-0.0040 (14)
C18	0.0284 (4)	0.0303 (5)	0.0336 (5)	0.0075 (4)	0.0059 (4)	-0.0005 (4)
C15	0.0323 (5)	0.0290 (5)	0.0348 (5)	0.0064 (4)	0.0081 (4)	0.0012 (4)
Cl12	0.0303 (5)	0.0274 (4)	0.0369 (5)	0.0039 (4)	0.0065 (4)	-0.0034 (4)
C13	0.0526 (6)	0.0589 (7)	0.0309 (5)	0.0177 (5)	-0.0004 (5)	-0.0042 (5)
Cl4	0.0617 (7)	0.0542 (7)	0.0312 (5)	0.0169 (6)	0.0012 (5)	-0.0016 (5)
Cl10	0.0671 (8)	0.0633 (8)	0.0297 (5)	0.0260 (6)	0.0004 (5)	-0.0062 (5)
Cl11	0.0380 (6)	0.0282 (5)	0.0789 (8)	0.0028 (4)	-0.0071 (5)	-0.0001 (5)
C19	0.0672 (8)	0.0572 (7)	0.0292 (5)	0.0254 (6)	0.0032 (5)	-0.0019 (5)
Cl7	0.0368 (6)	0.0286 (5)	0.0854 (9)	0.0058 (4)	-0.0036 (6)	-0.0016 (5)
C87	0.032 (2)	0.0295 (19)	0.0300 (19)	0.0103 (16)	-0.0002 (15)	0.0013 (15)
C88	0.0272 (19)	0.0308 (19)	0.033 (2)	0.0077 (16)	-0.0043 (15)	-0.0030 (16)
Cl1	0.0266 (5)	0.0371 (6)	0.0780 (8)	0.0024 (4)	0.0067 (5)	-0.0134 (5)
C16	0.0304 (5)	0.0353 (6)	0.1000 (10)	0.0036 (4)	0.0084 (6)	-0.0069 (6)
C86	0.0301 (19)	0.031 (2)	0.039 (2)	0.0061 (16)	0.0042 (16)	-0.0035 (16)
C85	0.030 (2)	0.031 (2)	0.036 (2)	0.0109 (16)	0.0018 (16)	-0.0056 (16)
Cl2	0.0274 (4)	0.0296 (5)	0.0350 (5)	0.0050 (4)	0.0044 (4)	-0.0001 (4)
Geometric p	arameters (Å, °)					
S5-C45		1 745 (4)	C59-	-C51	1 48	0 (5)
S5-C43		1 753 (3)	C22-	-C21	1 39	2 (5)
S4—C24		1.743 (3)	C22-	-H22	0.93	00
S4—C2		1.759 (4)	C36–	-C35	1.37	7 (5)
S8—C66		1.744 (4)	C36–	-H36	0.93	00
S8—C44		1.754 (3)	C24-	-C25	1.37	0 (5)
S1-C1		1.748 (4)	C65-	-C66	1.43	5 (5)
S1-C3		1 752 (3)	C45-	$C_{00} = C_{00}$		3 (5)
S7—C65		1.748 (3)	C18–	-C19	1.37	2 (5)
S7—C44		1 755 (4)	C18-	-H18	0.93	00
S3—C23		1.748 (3)	C11–	-C12	1.38	8 (5)
S3—C2		1.756 (3)	C11–	-C10	1.48	4 (5)
S6-C46		1.751 (3)	C25-	-H25	0.93	00
S6-C43		1.758 (4)	C67–	-C66	1.36	5 (5)
S2—C4		1.749 (3)	C67–	-H67	0.93	00
S2—C1		1.758 (3)	C28–	-H28	0.93	00

С10—С9

1.358 (4)

C68—N8

1.447 (5)

C68—C69	1.409 (5)	C2—C1	1.341 (5)
C68—C67	1.415 (5)	С74—Н74	0.9300
N7—C71	1.319 (4)	C38—C39	1.370 (5)
N7—C69	1.367 (4)	С38—Н38	0.9300
N3—C29	1.312 (4)	C30—C29	1.447 (5)
N3—C27	1.358 (4)	C78—C77	1.377 (5)
C17—C22	1.389 (5)	C78—H78	0.9300
C17—C18	1.396 (5)	C61—C60	1.386 (5)
С17—С9	1.486 (5)	C61—C62	1.386 (5)
C31—C32	1.382 (5)	C61—H61	0.9300
C31—C36	1.406 (5)	С60—Н60	0.9300
C31—C30	1.477 (5)	C41—C42	1.383 (5)
N6—C52	1.322 (4)	C41—C40	1.387 (5)
N6—C48	1.361 (4)	C41—H41	0.9300
C26—N4	1.360 (4)	C54—C55	1.380 (5)
C26—C25	1.407 (5)	C54—H54	0.9300
C26—C27	1.417 (5)	С50—Н50	0.9300
N2—C10	1.321 (5)	C40—C39	1.391 (5)
N2—C6	1.358 (4)	C40—H40	0.9300
C7—N1	1.356 (4)	C21—C20	1.387 (5)
С7—С8	1.410 (5)	C21—H21	0.9300
C7—C6	1.428 (5)	C58—C57	1.377 (5)
N4—C30	1.318 (4)	С58—Н58	0.9300
C80—C79	1.383 (5)	C33—C32	1.371 (5)
C80—C81	1.391 (5)	C33—C34	1.384 (6)
С80—Н80	0.9300	С33—Н33	0.9300
N5—C51	1.316 (4)	C14—C13	1.380 (5)
N5—C49	1.368 (4)	C14—C15	1.382 (5)
C49—C50	1.412 (5)	C14—H14	0.9300
C49—C48	1.419 (5)	C81—C82	1.387 (6)
C27—C28	1.422 (5)	C81—H81	0.9300
C3—C8	1.371 (5)	C77—C76	1.392 (6)
C3—C4	1.419 (5)	С77—Н77	0.9300
C72—N8	1.335 (5)	C42—H42	0.9300
C72—C71	1.433 (5)	C13—C12	1.386 (5)
C72—C73	1.493 (5)	C13—H13	0.9300
C53—C58	1.397 (5)	С32—Н32	0.9300
C53—C54	1.402 (5)	C55—C56	1.370 (6)
C53—C52	1.482 (5)	С55—Н55	0.9300
C70—C65	1.370 (5)	С39—Н39	0.9300
C70—C69	1.402 (5)	С76—Н76	0.9300
С70—Н70	0.9300	C35—C34	1.377 (6)
C79—C84	1.391 (5)	С35—Н35	0.9300
C79—C71	1.488 (5)	C15—H15	0.9300
N1—C9	1.309 (4)	С62—Н62	0.9300
C48—C47	1.403 (5)	C34—H34	0.9300
C5—C4	1.367 (5)	C56—C57	1.392 (5)
C5—C6	1.411 (5)	С56—Н56	0.9300
С5—Н5	0.9300	C19—C20	1.384 (6)

C23—C28	1.367 (5)	С19—Н19	0.9300
C23—C24	1.426 (5)	С57—Н57	0.9300
C52—C51	1.443 (5)	C83—C82	1.376 (6)
C46—C47	1.365 (5)	C83—C84	1.395 (5)
C46—C45	1.422 (5)	С83—Н83	0.9300
C63—C62	1.376 (6)	C84—H84	0.9300
C63—C64	1.381 (5)	C82—H82	0.9300
С63—Н63	0.9300	C20—H20	0.9300
C37—C42	1.396 (5)	C12—H12	0.9300
C37—C38	1.397 (5)	Cl8—C87	1.764 (4)
C37—C29	1.486 (5)	Cl5—C86	1.765 (4)
C73—C74	1.393 (5)	Cl12—C88	1.762 (4)
C73—C78	1.397 (5)	Cl3—C85	1.749 (4)
C43—C44	1.338 (5)	Cl4—C86	1.759 (4)
C47—H47	0.9300	Cl10—C88	1.755 (4)
C16—C15	1.396 (5)	Cl11—C88	1.760 (4)
C16—C11	1.398 (5)	Cl9—C87	1.756 (4)
C16—H16	0.9300	Cl7—C87	1.755 (4)
C75—C74	1.377 (5)	С87—Н87	0.9800
C75—C76	1.381 (6)	C88—H88	0.9800
С75—Н75	0.9300	Cl1—C85	1.771 (4)
C64—C59	1.407 (5)	Cl6—C86	1.765 (4)
C64—H64	0.9300	C86—H86	0.9800
C8—H8	0.9300	C85—Cl2	1.770 (4)
C59—C60	1.391 (5)	C85—H85	0.9800
C45—S5—C43	96.02 (17)	C1—C2—S4	122.5 (2)
		~ ~ ~ ~ .	115 42 (10)
C24—S4—C2	95.88 (16)	S3—C2—S4	115.43 (19)
C24—S4—C2 C66—S8—C44	95.88 (16) 96.17 (16)	S3—C2—S4 C75—C74—C73	115.43 (19) 120.8 (3)
C24—S4—C2 C66—S8—C44 C1—S1—C3	95.88 (16) 96.17 (16) 95.57 (16)	S3—C2—S4 C75—C74—C73 C75—C74—H74	115.43 (19) 120.8 (3) 119.6
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16)	S3—C2—S4 C75—C74—C73 C75—C74—H74 C73—C74—H74	115.43 (19) 120.8 (3) 119.6 119.6
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16)	S3—C2—S4 C75—C74—C73 C75—C74—H74 C73—C74—H74 N5—C51—C52	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3)
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16)	S3-C2-S4 C75-C74-C73 C75-C74-H74 C73-C74-H74 N5-C51-C52 N5-C51-C59	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3)
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16)	S3-C2-S4 C75-C74-C73 C75-C74-H74 C73-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3)
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1 N8—C68—C69	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 C73-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59 C2-C1-S1	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2)
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1 N8—C68—C69 N8—C68—C67	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 C73-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59 C2-C1-S1 C2-C1-S2	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2)
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1 N8—C68—C69 N8—C68—C67 C69—C68—C67	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 C73-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59 C2-C1-S1 C2-C1-S2 S1-C1-S2	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2)
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1 N8—C68—C69 N8—C68—C67 C69—C68—C67 C71—N7—C69	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59 C2-C1-S1 C2-C1-S2 S1-C1-S2 C39-C38-C37	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3)
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1 N8—C68—C69 N8—C68—C67 C69—C68—C67 C71—N7—C69 C29—N3—C27	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3) 118.3 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59 C2-C1-S1 C2-C1-S2 S1-C1-S2 C39-C38-C37 C39-C38-H38	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1 N8—C68—C69 N8—C68—C67 C69—C68—C67 C71—N7—C69 C29—N3—C27 C22—C17—C18	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3) 118.3 (3) 119.0 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 N5-C51-C52 N5-C51-C59 C2-C1-S1 C2-C1-S2 S1-C1-S2 C39-C38-C37 C39-C38-H38 C37-C38-H38	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1 N8—C68—C69 N8—C68—C67 C69—C68—C67 C71—N7—C69 C29—N3—C27 C22—C17—C18 C22—C17—C9	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3) 118.3 (3) 119.0 (3) 120.2 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59 C2-C1-S1 C2-C1-S2 S1-C1-S2 C39-C38-C37 C39-C38-H38 C37-C38-H38 N4-C30-C29	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9 119.9 121.0 (3)
C24—S4—C2 C66—S8—C44 C1—S1—C3 C65—S7—C44 C23—S3—C2 C46—S6—C43 C4—S2—C1 N8—C68—C69 N8—C68—C67 C69—C68—C67 C71—N7—C69 C29—N3—C27 C22—C17—C18 C22—C17—C9	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3) 118.3 (3) 119.0 (3) 120.2 (3) 120.8 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59 C2-C1-S1 C2-C1-S1 C2-C1-S2 S1-C1-S2 C39-C38-C37 C39-C38-H38 C37-C38-H38 N4-C30-C29 N4-C30-C31	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9 119.9 121.0 (3) 116.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3) 118.3 (3) 119.0 (3) 120.2 (3) 120.8 (3) 118.4 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 N5-C51-C52 N5-C51-C59 C52-C51-C59 C2-C1-S1 C2-C1-S2 S1-C1-S2 C39-C38-C37 C39-C38-H38 N4-C30-C29 N4-C30-C31 C29-C30-C31	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9 119.9 119.9 119.9 119.4 (3) 116.4 (3) 122.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3) 118.3 (3) 119.0 (3) 120.2 (3) 120.8 (3) 118.4 (3) 121.1 (3)	S3-C2-S4 C75-C74-C73 C75-C74-H74 N5-C51-C52 N5-C51-C59 C2-C1-S1 C2-C1-S2 S1-C1-S2 C39-C38-H38 C37-C38-H38 N4-C30-C29 N4-C30-C31 C29-C30-C31 C77-C78-C73	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9 119.9 119.9 119.0 (3) 116.4 (3) 122.4 (3) 120.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 119.2 (3) 118.3 (3) 119.0 (3) 120.2 (3) 120.8 (3) 118.4 (3) 121.1 (3) 120.4 (3)	$S_{3}-C_{2}-S_{4}$ $C_{75}-C_{74}-C_{73}$ $C_{75}-C_{74}-H_{74}$ $N_{5}-C_{51}-C_{52}$ $N_{5}-C_{51}-C_{59}$ $C_{2}-C_{1}-S_{1}$ $C_{2}-C_{1}-S_{2}$ $S_{1}-C_{1}-S_{2}$ $C_{39}-C_{38}-C_{37}$ $C_{39}-C_{38}-H_{38}$ $N_{4}-C_{30}-C_{29}$ $N_{4}-C_{30}-C_{31}$ $C_{29}-C_{31}$ $C_{77}-C_{78}-C_{73}$ $C_{77}-C_{78}-H_{78}$	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9 121.0 (3) 116.4 (3) 122.4 (3) 120.9 (3) 119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 119.2 (3) 119.2 (3) 118.3 (3) 119.0 (3) 120.2 (3) 120.8 (3) 118.4 (3) 121.1 (3) 120.4 (3) 118.7 (3)	$S_3-C_2-S_4$ $C_75-C_74-C_{73}$ $C_{73}-C_{74}-H_{74}$ $N_5-C_{51}-C_{52}$ $N_5-C_{51}-C_{59}$ $C_2-C_{1}-S_1$ $C_2-C_{1}-S_2$ $S_1-C_{1}-S_2$ $C_{39}-C_{38}-H_{38}$ $C_{37}-C_{38}-H_{38}$ $N_4-C_{30}-C_{29}$ $N_4-C_{30}-C_{31}$ $C_{29}-C_{30}-C_{31}$ $C_{77}-C_{78}-C_{73}$ $C_{77}-C_{78}-H_{78}$ $C_{73}-C_{78}-H_{78}$	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9 121.0 (3) 116.4 (3) 122.4 (3) 120.9 (3) 119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3) 118.3 (3) 119.0 (3) 120.2 (3) 120.8 (3) 118.4 (3) 121.1 (3) 120.4 (3) 118.7 (3) 119.6 (3)	$S_3 - C_2 - S_4$ $C_75 - C_74 - C_{73}$ $C_{75} - C_{74} - H_{74}$ $N_5 - C_{51} - C_{52}$ $N_5 - C_{51} - C_{59}$ $C_2 - C_1 - S_1$ $C_2 - C_1 - S_2$ $S_1 - C_1 - S_2$ $C_{39} - C_{38} - H_{38}$ $C_{37} - C_{38} - H_{38}$ $N_4 - C_{30} - C_{29}$ $N_4 - C_{30} - C_{31}$ $C_{29} - C_{30} - C_{31}$ $C_{77} - C_{78} - C_{73}$ $C_{77} - C_{78} - H_{78}$ $C_{73} - C_{78} - H_{78}$ $C_{73} - C_{78} - H_{78}$ $C_{60} - C_{61} - C_{62}$	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 121.0 (3) 116.4 (3) 122.4 (3) 120.9 (3) 119.6 119.6 120.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 117.7 (3) 118.3 (3) 119.0 (3) 120.2 (3) 120.8 (3) 118.4 (3) 121.1 (3) 120.4 (3) 118.7 (3) 119.6 (3) 120.3 (3)	$S_{3}-C_{2}-S_{4}$ $C_{75}-C_{74}-C_{73}$ $C_{75}-C_{74}-H_{74}$ $N_{5}-C_{51}-C_{52}$ $N_{5}-C_{51}-C_{59}$ $C_{2}-C_{1}-S_{1}$ $C_{2}-C_{1}-S_{2}$ $S_{1}-C_{1}-S_{2}$ $C_{39}-C_{38}-C_{37}$ $C_{39}-C_{38}-H_{38}$ $N_{4}-C_{30}-C_{29}$ $N_{4}-C_{30}-C_{31}$ $C_{29}-C_{30}-C_{31}$ $C_{77}-C_{78}-C_{73}$ $C_{77}-C_{78}-H_{78}$ $C_{73}-C_{78}-H_{78}$ $C_{60}-C_{61}-C_{62}$ $C_{60}-C_{61}-H_{61}$	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9 122.4 (3) 120.9 (3) 119.6 120.6 (3) 119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.88 (16) 96.17 (16) 95.57 (16) 95.98 (16) 96.00 (16) 95.76 (16) 95.70 (16) 121.7 (3) 119.1 (3) 119.2 (3) 119.2 (3) 119.2 (3) 119.0 (3) 120.2 (3) 120.8 (3) 118.4 (3) 121.1 (3) 120.4 (3) 118.7 (3) 119.6 (3) 120.3 (3) 120.0 (3)	$S_{3}-C_{2}-S_{4}$ $C_{75}-C_{74}-C_{73}$ $C_{75}-C_{74}-H_{74}$ $N_{5}-C_{51}-C_{52}$ $N_{5}-C_{51}-C_{59}$ $C_{2}-C_{1}-S_{1}$ $C_{2}-C_{1}-S_{2}$ $S_{1}-C_{1}-S_{2}$ $C_{39}-C_{38}-C_{37}$ $C_{39}-C_{38}-H_{38}$ $N_{4}-C_{30}-C_{29}$ $N_{4}-C_{30}-C_{31}$ $C_{77}-C_{78}-H_{78}$ $C_{73}-C_{78}-H_{78}$ $C_{60}-C_{61}-C_{62}$ $C_{60}-C_{61}-H_{61}$ $C_{62}-C_{61}-H_{61}$	115.43 (19) 120.8 (3) 119.6 119.6 120.7 (3) 117.0 (3) 122.3 (3) 122.7 (2) 121.3 (2) 115.9 (2) 120.1 (3) 119.9 119.9 121.0 (3) 116.4 (3) 122.4 (3) 120.9 (3) 119.6 119.6 120.6 (3) 119.7

N1—C7—C8	119.9 (3)	N3—C29—C37	116.4 (3)
N1—C7—C6	120.2 (3)	C30—C29—C37	122.7 (3)
C8—C7—C6	119.8 (3)	C61—C60—C59	119.9 (3)
C30—N4—C26	118.2 (3)	С61—С60—Н60	120.0
C79—C80—C81	120.5 (3)	С59—С60—Н60	120.0
С79—С80—Н80	119.7	C42—C41—C40	119.6 (3)
C81—C80—H80	119.7	C42—C41—H41	120.2
C51—N5—C49	118.5 (3)	C40—C41—H41	120.2
N5-C49-C50	119.5 (3)	C55—C54—C53	120.1 (3)
N5-C49-C48	120.7 (3)	С55—С54—Н54	120.0
C50—C49—C48	119.8 (3)	С53—С54—Н54	120.0
N3—C27—C26	121.0 (3)	C45—C50—C49	119.0 (3)
N3—C27—C28	119.5 (3)	С45—С50—Н50	120.5
C26—C27—C28	119.5 (3)	С49—С50—Н50	120.5
C8—C3—C4	121.1 (3)	C67—C66—C65	120.2 (3)
C8—C3—S1	122.3 (3)	C67—C66—S8	123.8 (3)
C4—C3—S1	116.6 (3)	C65—C66—S8	116.0 (2)
N8—C72—C71	121.2 (3)	N1—C9—C10	121.4 (3)
N8—C72—C73	115.5 (3)	N1—C9—C17	115.9 (3)
C71—C72—C73	123.3 (3)	C10—C9—C17	122.6 (3)
C58—C53—C54	118.5 (3)	C41—C40—C39	119.4 (3)
C58—C53—C52	120.9 (3)	C41—C40—H40	120.3
C54—C53—C52	120.5 (3)	С39—С40—Н40	120.3
C72—N8—C68	117.1 (3)	C20—C21—C22	120.3 (3)
C65—C70—C69	119.3 (3)	C20—C21—H21	119.8
С65—С70—Н70	120.4	C22—C21—H21	119.8
С69—С70—Н70	120.4	C57—C58—C53	120.6 (3)
C80—C79—C84	119.6 (3)	C57—C58—H58	119.7
C80—C79—C71	118.7 (3)	С53—С58—Н58	119.7
C84—C79—C71	121.6 (3)	C32—C33—C34	120.1 (4)
C9-N1-C7	118 5 (3)	C32—C33—H33	119.9
N6-C48-C47	119.8 (3)	C34—C33—H33	119.9
N6-C48-C49	120.0(3)	C13—C14—C15	1201(3)
C47 - C48 - C49	120.0(3)	C13—C14—H14	119.9
C4 - C5 - C6	1197(3)	C15-C14-H14	119.9
C4—C5—H5	120.1	C43 - C44 - 88	1221(2)
C6-C5-H5	120.1	C43 - C44 - 87	122.1(2) 122.3(2)
C_{28} C_{23} C_{24}	120.1	S8_C44_S7	122.5(2)
$C_{23} = C_{23} = S_{3}$	121.1(3) 122.9(3)	C82 - C81 - C80	119.0(2) 119.8(4)
$C_{23} = C_{23} = S_{3}$	122.9(3)	C82 = C81 = H81	120.1
N2-C6-C5	110.8 (3)		120.1
$N_2 = C_0 = C_3$	117.0(3)	$C_{30} = C_{31} = 1181$	120.1
12 - 60 - 67	120.7(3)	$C_{78} = C_{77} = H_{77}$	119.0 (3)
N6 C52 C51	119.5(3) 121.0(3)	C76 C77 H77	120.2
N6 C52 C53	121.0(3) 115.5(3)	$C_{10} = C_{11} = C_{11}$	120.2
10 - 0.52 - 0.53	123 2 (2)	$C_{11} = C_{12} = C_{37}$	121.0 (3)
$C_{31} - C_{32} - C_{33}$	123.3(3) 120.8(3)	$C_{+1} = C_{42} = C_{142}$	119.5
$C_{47} = C_{40} = C_{43}$	120.0(3)	$C_{3} = C_{42} = C_{14} = C_{12}$	117.5
$C_{4} = C_{40} = S_{0}$	123.0(3)	$C_{14} = C_{13} = C_{12}$	120.5 (5)
043-040-50	110.3 (3)	U14—U13—H13	119.9

N7—C71—C72	121.6 (3)	C12—C13—H13	119.9
N7—C71—C79	115.0 (3)	C33—C32—C31	121.2 (3)
C72—C71—C79	123.4 (3)	С33—С32—Н32	119.4
C62—C63—C64	120.5 (3)	С31—С32—Н32	119.4
С62—С63—Н63	119.8	C56—C55—C54	121.1 (3)
С64—С63—Н63	119.8	С56—С55—Н55	119.4
C42—C37—C38	118.7 (3)	С54—С55—Н55	119.4
C42—C37—C29	121.3 (3)	C38—C39—C40	121.1 (3)
C38—C37—C29	120.0 (3)	С38—С39—Н39	119.5
C74—C73—C78	118.5 (3)	С40—С39—Н39	119.5
C74—C73—C72	120.2 (3)	C75—C76—C77	120.2 (3)
C78—C73—C72	121.3 (3)	С75—С76—Н76	119.9
C44—C43—S5	122.6 (2)	С77—С76—Н76	119.9
C44—C43—S6	121.9 (2)	C34—C35—C36	120.5 (3)
S5—C43—S6	115.58 (19)	С34—С35—Н35	119.8
C46—C47—C48	119.4 (3)	С36—С35—Н35	119.8
С46—С47—Н47	120.3	C14—C15—C16	120.1 (3)
C48—C47—H47	120.3	C14—C15—H15	119.9
C15-C16-C11	119.6 (3)	C16—C15—H15	119.9
С15—С16—Н16	120.2	C63—C62—C61	119.8 (3)
С11—С16—Н16	120.2	С63—С62—Н62	120.1
C5—C4—C3	120.6 (3)	С61—С62—Н62	120.1
C5—C4—S2	123.4 (3)	C35—C34—C33	119.7 (3)
C3—C4—S2	116.1 (3)	С35—С34—Н34	120.2
C74—C75—C76	120.0 (4)	С33—С34—Н34	120.2
С74—С75—Н75	120.0	C55—C56—C57	119.4 (3)
С76—С75—Н75	120.0	С55—С56—Н56	120.3
C63—C64—C59	120.1 (3)	С57—С56—Н56	120.3
С63—С64—Н64	119.9	C18—C19—C20	120.7 (3)
С59—С64—Н64	119.9	С18—С19—Н19	119.7
C3—C8—C7	119.2 (3)	С20—С19—Н19	119.7
С3—С8—Н8	120.4	C58—C57—C56	120.3 (4)
С7—С8—Н8	120.4	С58—С57—Н57	119.8
C60—C59—C64	119.0 (3)	С56—С57—Н57	119.8
C60—C59—C51	121.6 (3)	C82—C83—C84	120.7 (4)
C64—C59—C51	119.3 (3)	C82—C83—H83	119.7
C17—C22—C21	120.1 (3)	С84—С83—Н83	119.7
C17—C22—H22	120.0	C79—C84—C83	119.5 (4)
C21—C22—H22	120.0	С79—С84—Н84	120.2
C35—C36—C31	120.1 (3)	C83—C84—H84	120.2
С35—С36—Н36	120.0	C83—C82—C81	119.8 (4)
C31—C36—H36	120.0	C83—C82—H82	120.1
C25—C24—C23	120.3 (3)	C81—C82—H82	120.1
C25—C24—S4	123.1 (3)	C19—C20—C21	119.3 (3)
C23—C24—S4	116.5 (3)	C19—C20—H20	120.3
C70—C65—C66	120.5 (3)	C21—C20—H20	120.3
C70—C65—S7	123.3 (3)	C13—C12—C11	120.2 (3)
C66—C65—S7	116.1 (3)	C13—C12—H12	119.9
C50—C45—C46	120.8 (3)	C11—C12—H12	119.9

C50—C45—S5	122.8 (3)	Cl7—C87—Cl9	110.8 (2)
C46—C45—S5	116.3 (3)	Cl7—C87—Cl8	110.2 (2)
C19—C18—C17	120.6 (3)	Cl9—C87—Cl8	110.9 (2)
C19—C18—H18	119.7	Cl7—C87—H87	108.3
C17—C18—H18	119.7	Cl9—C87—H87	108.3
N7—C69—C70	118.6 (3)	Cl8—C87—H87	108.3
N7—C69—C68	120.5 (3)	Cl10—C88—Cl11	110.6 (2)
C70—C69—C68	120.8 (3)	Cl10—C88—Cl12	110.5 (2)
C12—C11—C16	119.6 (3)	Cl11—C88—Cl12	110.2 (2)
C12-C11-C10	121.5 (3)	Cl10—C88—H88	108.5
C16—C11—C10	118.9 (3)	Cl11—C88—H88	108.5
C24—C25—C26	119.8 (3)	Cl12—C88—H88	108.5
С24—С25—Н25	120.1	Cl4—C86—Cl5	110.6 (2)
С26—С25—Н25	120.1	Cl4—C86—Cl6	110.6 (2)
C66—C67—C68	119.9 (3)	Cl5—C86—Cl6	109.8 (2)
С66—С67—Н67	120.0	Cl4—C86—H86	108.6
С68—С67—Н67	120.0	Cl5—C86—H86	108.6
C23—C28—C27	119.2 (3)	Cl6—C86—H86	108.6
C23—C28—H28	120.4	Cl3—C85—Cl2	110.8 (2)
C27—C28—H28	120.4	Cl3—C85—Cl1	111.0 (2)
N2-C10-C9	120.7 (3)	Cl2—C85—Cl1	109.3 (2)
N2-C10-C11	116.1 (3)	Cl3—C85—H85	108.6
C9—C10—C11	123.2 (3)	Cl2—C85—H85	108.6
C1—C2—S3	122.1 (2)	Cl1—C85—H85	108.6

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C8—H8···Cl2 ⁱ	0.93	2.94	3.676 (4)	137.
C85—H85…N2 ⁱⁱ	0.98	2.31	3.233 (5)	156.
C12—H12···N6 ⁱⁱⁱ	0.93	2.61	3.344 (4)	136.
C86—H86···N3 ^{iv}	0.98	2.29	3.223 (5)	158.
C88—H88…N8 ^{iv}	0.98	2.28	3.199 (5)	155.
C87—H87…N5 ^v	0.98	2.32	3.246 (5)	157.
C60—H60…N1 ^{vi}	0.93	2.63	3.392 (5)	139.
C78—H78…N4 ^{vii}	0.93	2.62	3.427 (4)	145.
C42—H42…N7 ^v	0.93	2.61	3.358 (4)	138.

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1/2, *y*+1/2, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*-1/2, *y*-1/2, *z*; (v) *x*+1/2, *y*-1/2, *z*; (vi) *x*-1/2, *y*+1/2, *z*; (vii) *x*, *y*+1, *z*.

Fig. 1

Fig. 4

